处理结构
作者:
莫烦
2016-11-03
编辑:
计算图纸 ¶
Tensorflow 首先要定义神经网络的结构, 然后再把数据放入结构当中去运算和 training.
(动图效果请点击这里)
因为TensorFlow是采用数据流图(data flow graphs)来计算, 所以首先我们得创建一个数据流流图, 然后再将我们的数据(数据以张量(tensor)的形式存在)放在数据流图中计算. 节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组, 即张量(tensor). 训练模型时tensor会不断的从数据流图中的一个节点flow到另一节点, 这就是TensorFlow名字的由来.
Tensor 张量意义 ¶
张量(Tensor):
- 张量有多种. 零阶张量为 纯量或标量 (scalar) 也就是一个数值. 比如
[1]
- 一阶张量为 向量 (vector), 比如 一维的
[1, 2, 3]
- 二阶张量为 矩阵 (matrix), 比如 二维的
[[1, 2, 3],[4, 5, 6],[7, 8, 9]]
- 以此类推, 还有 三阶 三维的 …
分享到:
如果你觉得这篇文章或视频对你的学习很有帮助, 请你也分享它, 让它能再次帮助到更多的需要学习的人.
莫烦没有正式的经济来源, 如果你也想支持 莫烦Python 并看到更好的教学内容, 赞助他一点点, 作为鼓励他继续开源的动力.