切换视频源:

选择学习方法

作者: Alice 编辑: 莫烦 2016-11-03

学习资料:

看图选方法

安装完 Sklearn 后,不要直接去用,先了解一下都有什么模型方法,然后选择适当的方法,来达到你的目标。

Sklearn 官网提供了一个流程图, 蓝色圆圈内是判断条件,绿色方框内是可以选择的算法:

选择学习方法

从 START 开始,首先看数据的样本是否 >50,小于则需要收集更多的数据。

由图中,可以看到算法有四类,分类,回归,聚类,降维

其中 分类和回归是监督式学习,即每个数据对应一个 label。 聚类 是非监督式学习,即没有 label。 另外一类是 降维,当数据集有很多很多属性的时候,可以通过 降维 算法把属性归纳起来。例如 20 个属性只变成 2 个,注意,这不是挑出 2 个,而是压缩成为 2 个,它们集合了 20 个属性的所有特征,相当于把重要的信息提取的更好,不重要的信息就不要了。

然后看问题属于哪一类问题,是分类还是回归,还是聚类,就选择相应的算法。 当然还要考虑数据的大小,例如 100K 是一个阈值。

可以发现有些方法是既可以作为分类,也可以作为回归,例如 SGD

分享到: Facebook 微博 微信 Twitter
如果你觉得这篇文章或视频对你的学习很有帮助, 请你也分享它, 让它能再次帮助到更多的需要学习的人. 莫烦没有正式的经济来源, 如果你也想支持 莫烦Python 并看到更好的教学内容, 赞助他一点点, 作为鼓励他继续开源的动力.

支持 让教学变得更优秀